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Southern Hemisphere hydroclimate
2000-2009 drought and global productivity

Strong fluctuations in global NPP
notable negative anomalies
similar temporal pattern to atmo-

spheric inversion:
2000: +NPP and +PDSI (wet)
2005: —NPP and -PDSI (dry)

Similar pattern between SH NPP and
drought
Northern Hemisphere no relationship

Some divergence between SH NPP and
PDSI (e.g., 2004)

Provides an understanding of anteced-
ent conditions for what was to come
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Global anomalies: ocean level decline
2010-2011

Strongest sustained La Nina in over 90 years (since 1917) [Boening et al. 2012]
5 mm drop in ocean level [Boening et al. 2012]
Increase in total continental water mass through 2012 [Fasullo et al. 2013]
Runoff returned additonal
water to the ocean from
other continents
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2011 global land C sink anomaly

Extraordinary C sink identified in semi-arid regions of the Southern Hemi-
sphere attributed to La Nina [Poulter et al. 2014]
57% attributed to Australian aridlands
Remainder attributed to
southern African arid-
lands and temperate S
America

Direct measurements of en-
hanced C sink and produc-

tivity [Cleverly et al. 2013, Eamus et
al. 2013]
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El Nino-Southern Oscillation

Pacific Ocean
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Southern Ocean

Direct baroclinic effects in QLD [cai etal. 2012]
General moisture field via indirect Rossby waves [Risbey et al. 2009]

How closely is La Nina correlated to precipitation?
(] - (] o 7
Was this a case of a 1-point correlation? T A



Temporal ENSO-precipitation correlation

Coherence

Precipitation (mm yr'1)

Coherence: squared correlation

Significantly different from zero at ~ 0.8

Previous extreme La Nina resulted in small but significant increase in precipitation
ENSO is not the only driver of precipitation
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Indian Ocean Dipole
Boreal summer

Pacific Ocean

<

~ IOD-Atlantic
Walker Circulation + positive phase .

Indian Ocean dipole

——— Boreal summer
------- » Austral summer

Southern Ocean '[Numerous references]

Shoaling of cold water in eastern 1O creates an equatorial dipole

Convection in western 10 created by lifting from warm pole

Convection drives formation of IOD-Atlantic and cross-10 Walker Circulation

Cold pole blocks precipitation in NW Australia science.uts.edu.au



Indian Ocean Dipole
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Convection centre crosses 10 eastward along the equator
I0OD strongly involved in development of the Australian monsoon depression
10-PO Walker Circulation connects IOD and ENSO
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Southern Annular Mode
Mascarene High
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Position of MH impacted by SAM and AMOC-northwestern 10
MH affects N-S position of monsoon depression and continental Low
SAM associated with subtropical ridge, cloud bands and weather in SE Australia
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Climate modes
ENSO, IOD and SAM
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I0D: strength of monsoon depression
SAM: location of monsoon landfall via MH

Individually related to rainfall occurrence, not amount [pui et al. 2012]
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Hypotheses

 Interaction of regional climate modes explains variations in pre-
cipitation amount

« Combined effects of climate modes will be reflected in continen-
tal weather patterns

« Pattern of green leaf production will reflect continental weather
patterns

Methods

wavelet PCA: Nino3.4, dipole mode index, southern annular mode index
wavelet coherence: wPC versus precipitation
NCEP re-analysis: 500 hPa geopotential heights above zonal average

MODIS EVI: 2011 EVI anomalies
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Climate mode interactions

wavelet PCA
wWPC1 wPC2
Date range (% of total) (% of total)
1982—-1998 0.99 SAMI - 0.16 Nifio3.4 — 0.03 DMI -0.16 SAMI - 0.95 Nifio3.4 — 0.25 DMI
(70.9) (24.6)
19982013 —-0.99 SAMI + 0.17 Nifio3 .4 + 0.04 DMI -0.17 SAMI - 0.98 Nifio3.4 — 0.05 DMI
(80.2) (15.7)

19822013 -0.93 SAMI + 0.24 Niho3 .4 - 0.28 DMI
(=99)

SAM explains the largest amount of variability amongst climate modes

10D explains very little variability except over long timescales (1982-2013) and
in wPC2 of 1982-1998

Overall: half of the variability due to SAM, one-quarter for each of ENSO and IOD
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Climate drivers
I0OD, ENSO, SAM

Precipitation (mm yr')

(a) Wavelet coherence: wPC1-P
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Correlation between wPC1 and precipi-
= b tation identified by wavelet coher-
ence (squared correlation)

=~ - o= Synchronisation of climate drivers be-
ginning in 1999 associated with in-

creased coherence between rainfall
amount and climate

Synchronisation associated with large
fluctuations in rainfall, both very wet
and very dry years
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Pre-synchronisaation

1982-1999
b. Nino3.4-P c. SAMI-P
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Correlations strongest with 10D

Key ENSO-precipitation coherence on seasonal and sub-seasonal timescales during
El Nino (dry correlation)

SAM has little direct relationship with precipitation
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Weather system interactions
Monsoon depression x continental low
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[Kong and Zhao 2010]
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Weather patterns
2009 dry versus 2011 wet
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(a) September 2008—March 2009
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(b) September 2010-March 2011
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2008-2009: Ridge over central Australia, depression pushed north of 10-15

°S, vorticity in southeast Queensland

2010-2011: Deep vorticity from northwestern Australia (monsoon depres-
sion) to the Great Australian Bight, voticity node in southeast Queensland
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Ti Tree catchment
Contributions by Mulga and Spinifex

| |
Uz | Mulga woodland |

021 + ---- Corymbiasavanna —

0.18

0.15

MODIS EVI

0.12

0.09
2000 2004 2008 2012

Large inter-annual variations in
EVI

Neither ecosystem consistently
exhibits larger responses dur-
ing wet years

Dry years: EVI approaching un-
vegetated limt
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Conclusions

H1: Interaction of regional climate modes explain variations in precipitation:

Verified. Synchronisation of climate modes and precipitation began in 1999.
In previous years, precipitation driven primarily by the Indian Ocean dipole.

H2: Reflection of climate modes in continental weather patterns:

Verified. Directinfluences of IOD and ENSO observed in 500 hPa vorticity. In-
direct effect of SAM on position of the monsoon depression apparent in wet
and dry years.

H3: Pattern of green leaf production reflects continental weather patterns:

Verified. Pattern of green leaf production followed weather patterns, and two
of the dominant semi-arid vegetation types (Mulga and Spinifex) responded
with extraordinary resilience to antecedent drought during precipitation
anomalies.
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Thank you

Questions?
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