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What | want to do...

Evaluate the ability of land surface models* to accurately
simulate atmospheric fluxes at a range of spatial scales

Do this in a way that allows us to tell what might cause any
problems

... I'll try to argue that flux tower data is the key to doing this.

*i.e. coupled to a climate model => must work globally (without local calibration); half hourly
time step; no local data beyond vegetation type and height; sensible, latent NEE fluxes




Confirmation holism

Lenhard & Winsberg (2010): Holism, entrenchment, and the future of climate model pluralism Studies in
History and Philosophy of Modern Physics

“Confirmation holism... is the thesis that a single hypothesis cannot be tested in isolation,
but... depend(s) on other theories or hypotheses. It is always this collection of theories
and hypotheses as a whole... that confront the tribunal of experience.”

“If the predicted phenomenon is not produced, not only is the questioned
proposition put into doubt, but also the whole theoretical scaffolding used by the
physicist” (Duhem 1954).

— The experiment tells that there is something wrong, but does not tell where the error
comes from, hence the doubt is necessarily holistic.

“problems of understanding what features of our models are responsible for their
best and worst qualities”

“it is impossible to tell [categorically], by any method, where to locate the sources of
the failures of our models to match known data.”




Confirmation holism

Lenhard & Winsberg (2010): Holism, entrenchment, and the future of climate model pluralism Studies in
History and Philosophy of Modern Physics
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Confirmation holism causes: fuzzy modularity

“That means, one parametrization is tested on the basis of the
parameterizations that are already part of the concrete model under
construction. That contributes to what we call path-dependency: the next
modeling step is influenced by the accumulated effects of the previously
implemented steps. And it creates a ‘fuzzy’ kind of modularity: normally,
modules are thought to stand on their own. In this way, modularity should have
the virtue of reducing complexity. In our present case, however, the modules
(parameterizations) are interdependent and therefore lack this virtue.”

Lenhard & Winsberg (2010): Holism, entrenchment, and the future of climate model
pluralism Studies in History and Philosophy of Modern Physics




Confirmation holism causes: kludging

kludge | kladz, klu:dz| (also cludge) informal

noun

an ill-assorted collection of parts assembled to fulfil a particular
purpose.

o Computing a machine, system, or program that has been badly
put together, especially a clumsy but temporarily effective
solution to a particular fault or problem.

verb [ with obj. ]
improvise or put together from an ill-assorted collection of parts.
Hugh had to kludge something together.

ORIGIN 1960s: invented word, perhaps influenced by BODGE and
FUDGE.




Confirmation holism causes: kludging

“A kludge is built to optimize the performance of the overall model as it exists at that

particular time, and with respect to the particular measures of performance that are

in use right then. There is no guarantee that an implemented kludge is optimal in any
general sense.”

“Kludging plays a central role in the construction of complex models. When
modifications are made to a complex model, and are shown to improve model
performance, there is often a mixture of principled and unprincipled steps involved in
the modification. And so when some new elements are added to a model, and
improve model performance, it is often impossible to know if this happens because
what has been added has goodness-of-fit on its own, or merely because, in
combination with the rest of the model, what is achieved on balance is an
improvement. ”

Lenhard & Winsberg (2010): Holism, entrenchment, and the future of climate model
pluralism Studies in History and Philosophy of Modern Physics




Evaluating LSMs in gridded coupled simulations

e Confirmation holism most evident

e Results are a function of the quirks of individual
component models AND the way in which these
components interact

— E.g. some LSM behaviour evident only when coupled to a
certain boundary layer model
Predicted variable values are an emergent
property of the feedbacks and sensitivities of the
entire modelling system, and may not reflect the
LSM being evaluated

Can we categorically: Evaluate the ability of land
surface models to accurately simulate atmospheric
fluxes at a range of spatial scales

No.




Evaluating LSMs in gridded offline simulations

Prescribe meteorological forcing data (SWdown,
LW down, Tair, Hum, Wind, Pr)
— Reanalysis or a collection of observationally-based
interpolated products

— Typically daily - require a weather generator for hourly /
half-hourly fluxes

Chaotic / emergent phenomena are no longer an
issue: no feedbacks

Is poor LSM performance due to forcing or LSM?
— E.g. average precip may be < average ET for some products

Can we categorically: Evaluate the ability of land
surface models to accurately simulate atmospheric
fluxes at a range of spatial scales

No.




Offline or coupled: gridded evaluation data

Monthly mean Qle: Model - CABLEtestGlobal

 Typically based on remote-sensing
Frequency Of ove rpass - representative? m:xi(?‘;455365059353389356773364039630)9) W v . : SA@?E?EStGIObaI

Mean = (52.4, 46.6, 44.3, 45.2, 45.3, 49.2) GLEAM_v2A ET
SD - (6.37, 8.09, 6.19, 5.86, 7.79, 6.93) ‘ GLEAM_v2B ET
i i NME Scores: 0814 (MPIET) ' — MOD16 ET
Viewin g ang le 147 (GLEAM_V2AET) LandFlux ET
14 (GLEAM v2BET)
109 (MOD16 ET)
05504 (LandFlux ET)

Missing data from cloudiness

Depth of measurement (e.g. soil moisture)
Monthly time step

Competing products show big differences

Monthly mean latent heat flux ( W/ m? )

* Compensating LSM processes

1Jan01 1Jan02 1Jan03 1Jan04 1Jan05 1Jan06 1Jan07 1Jan08 1 Jan09

Can we categorically: Evaluate the ability of land surface models to accurately
simulate atmospheric fluxes at a range of spatial scales

No.




Offline or coupled: parameter identifiability

* Very few of the 30-50 parameters that LSMs require are identifiable at
global or regional scales
— Aggregating assumptions about process dependence — veg & soil ‘types’
— Reduces spatially varying surface information to 2-3 dimensions

 What s the cost of this lack of heterogeneity?

Can we categorically: Evaluate the ability of land surface models to accurately
simulate atmospheric fluxes at a range of spatial scales

No.




Confirmation holism in gridded simulations

Parameter identifiability

Temporal averaging is necessary for evaluation

Compensating processes within the LSM (offline and coupled)

Discordant relationships between LSM and host model (coupled)
We can note that gridded evaluation products and LSMs disagree, but...

We cannot say why - inability to attribute errors

(Trial and error changes to parametrisation does not resolve this problem)




Evaluation at flux tower sites

Measurement of all meteorological forcing variables
Measurement of atmospheric fluxes

Very high temporal resolution, giving representative values when
averaged up to time step size of a LSM (e.g. hourly)

A significant proportion of LSM parameters are directly measurable
Coverage across biomes internationally, 100s sites

Diversity in individuals taking measurements and processing —
independent samples

Appropriately sited flux tower has fetch of order 1km? —LSM length |- .1
scale? )" AN

Can we categorically: Evaluate the ability of land surface models to
accurately simulate atmospheric fluxes at a range of spatial scales

Maybe vyes...
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Evaluation at flux tower sites: conservation

Qle +Qh : TumbaFiuxnet1.3

Qle +Qh : ElSaler2Fluxnet13

Daily average energy conservation

Intercept: 7.45
Gradient: 1.02

Total imbalance: -228 Wi/ per day _;
Mean daily deviation: 390 Whim2

50 100 150 200 250

Rnet - Qg : TumbaFluxnet.1.3

Daily average energy conservation
Intorcopt: 27.4
Gradient: 0.568

Total imbalance: 360 Wh/m2 per day
Mean daily deviation: 785 Wh/m2

Qe + Qh : HowardFluxnet.1.0

Daily average energy conservation

Intercept: 39.9
Gradient: 0.648

Total imbalance: 241 Whimz per day
Mean daily deviation: 547 Wh/m2

100 200

Rinet - Qg : HowardFluxnet.1.0

5 0 50 100 150 200 250
Rnet - Qg : ElSaler2Fluxnet. 1.3

Qle +Qh : BlodgettFluxnet 1.3

Daily average energy conservation

Intercept: ~9.98
Gradient: 0.973

Total imbalance: 310 Wiz per day
Mean daily deviation: 486 Wh/m2

100 150

Rnet - Qg : BlodgettFluxnet.1.3

Qle +Gh : AmpleroFiuxnet.1.0

Daily average energy conservation

Intercept: 5.17
Gradient: 0.759

Total imbalance: 344 Wh/mz per day
Mean daily deviation: 583 Whim2 .

0 50 100 150 200

Rinet - Qg : AmpleroFiuxnet.1.0

Qe +h : HesseFluxnet.1.3

Daily average energy conservation

Qle + Qh : BugacFluxnet1.4

Qle + Gh : FortPeckFluxnet 1.3

Daily average energy conservation

Intercept: -5.22
Gradient: 0.874

Total imbalance: 338 Wh/m per day
Mean daily deviation: 430 Wh/m2

100 150

Rinet - Qg : BugacFluxnet.1.4

Daily average energy conservation

ntorcept: 155
Gradient: 0.89¢

Total mbalance: -271 Whim pgr day
Mean dally deviaion: 505 Whan2

100 200

Rnet - Qg : FortPeckFluxnet.1.3

Intercept: ~13.2
Gradient: 0.712

Total imbalance: 796 Wh/m2 per day
Mean daily deviation: 921 Wh/m2

100 200 300

Rinet - Qg : HesseFluxnet.1.3

Rnet - ground heat flux

Qle +Qh : SyNaniaFluxnet1.4

Daily average energy conservation

Intercept: 4.47
Gradient: 0.648

Total imbalance: 436 Wh/m per day
Mean daily deviation: 617 Wh/m2

100 150
Rinet - Qg : SylvaniaFluxnet.1.4
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Evaluation at flux tower sites: an example

“This is a great simulation of latent heat flux”

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_J3.1

—— Observed Min = (-55.3, -72) Score_smooth: 0.746

—— Modelled Max = (372, 418) _
Mean = (47.5, 33.7) Score_all: 0.502

SD = (67.5, 56) (NME)

9.3% of observed Qle is gap-filled:

T T T T I
1Jan03 1Jun03 1Jan04 1Jun04 1Jan05 1Jun05 1Jan06 1Jun06




Evaluation at flux tower sites: an example

How well should we expect a LSM to predict latent heat (LH) flux at the
Amplero site?

1. Take several (19) flux tower sites other than Amplero

2. Train a linear regression between shortwave radiation and LH flux
3. Use these regression parameters to predict LH at Amplero using site met

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_J3.1

This will tell us:

Min = (-55.3, -72) Score_smooth: 0.746
m:" = (372, 418) Score_all: 0.502

* The extent to which LH is N i 2 (g}
predictable from SWdown - just
How a very simple functional \

relationship would represent LH

1 model input variable
. . | Y
in our usual diagnostics “ A

eat flux W/ m?

othed latent h

|

9.3% of observed Qle is gap-filled:

How predictable LH at Amplero 2T e
is, out-of-sample — is this site o o o o
unusually difficult?

Smol

Abramowitz, 2012, GMD




Evaluation at flux tower sites: an example

Smoothed Qle: 14-day running mean. Obs - AmpleroFluxnet.1.4 Model - Amplero_J3.1

Observed Min = (-55.3, -72, 3.54, -20.1, -0.849) Score_smooth: 0.746, 0.638, 0.625, 0.619
o Max = (372, 418, 240, 237, 275) Score_all: 0.502, 0.4, 0.447, 0.414
— B_Empilin Mean = (47.5, 33.7, 36.3, 35.7, 36) we

B_Emp2lin _
B_Emp3km27 8D = (67.5, 56, 51.6, 52.6, 54.3)
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9.3% of observed Qle is gap-filled:

T T T T
1 Jan 03 1Jun 03 1 Jan 04 1 Jun 04 1Jan 05 1 Jun 05 1 Jan 06 1 Jun 06

Abramowitz, 2012, GMD




Evaluation at flux tower sites: an example

We can use empirical models can quantify the amount of information in the
met data about fluxes (at the same time step size as the LSM)

It gives us a way to quantify how well we should expect a LSM to perform

It provides a LSM-like time series, and so provides benchmark performance
levels in any chosen metric

To make the benchmark appropriate, we can control:
— The amount of information given to empirical model (i.e. how many / which model inputs)
— The complexity of the empirical model (linear regression, ANNs, cluster+regression, etc)

— The relationship between the training and testing sets (extent of out-of-sample test)




Expanded example: The PALS Land sUrface Model
Benchmarking Evaluation pRoject (PLUMBER)

20 Flux tower sites; latent and sensible heat

4 metrics: bias, correlation, SD, normalised mean error

9 LSMs, 15 LSM versions

LSMs given: veg type, veg height, tower height (as in gridded application)
Benchmarks: two ‘physical’ — PM and Manabe bucket; 3 empirical

B Evergreen broadleaf
C Crop

D Deciduous broadleaf
E Evergreen needleleaf
G Grass

M Mixed forest

P Permanent wetland
S Savanna

W Woody Savanna

Best et aI,‘ 2015, J Hydromet.




The three empirical benchmarks in PLUMBER

All 3 empirical models relate met forcing and a flux and are trained with
data from sites other than the testing site (i.e. out of sample)

They are each created for LE, H:
“1lin”: linear regression of flux against downward shortwave (SW)
“2lin”: as above but against SW and surface air temperature (T)

“3km27”: non-linear regression — 27-node k-means clustering + linear
regression against SW, T and relative humidity at each node

Gap-filled data are NOT included in training

All are instantaneous responses to met variables with no knowledge of
vegetation type, soil type, soil moisture or temperature, C pools.




PLUMBER results

Best et al, 2015, J Hydromet.

1lin == 2lin 3km27 === Manabe Bucket.1 == model Penman_Monteith.1

CABLE 2.0 CABLE 2.0 SLI COLASSiB 2.0 ISBA_SURFEX 3| ISBA_SURFEX JULES 3.1 MOSAIC NOAH 2.7.1 NOAH 3.3 Noah 3.2 ORCHIDEE

I I l l [ | l I I 1 [ l l I | ] I 1 [ I l ]
Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle Qh Qle

Vertical axis is the rank of each LSM (black) against the 5 benchmarks, averaged over:
20 Flux tower sites (IGBP vegetation types)
4 metrics (bias, correlation, SD, NME)

On average, LSMs outperform Penman-Monteith and Manabe bucket implementations

On average, LSMs sensible heat prediction is worse than an out-of-sample linear
regression against downward SW radiation

For all fluxes, models are comfortably beaten by out-of-sample regression against
Swdown, Tair and Rel[Hum




PLUMBER results — methodology?

Lack of flux tower energy conservation advantaging empirical models?

Time scale — daily, monthly, seasonal rather than per time step
performance?

Time of day — diurnal biases in flux tower favouring empirical models?
Poor LSM initialisation?

Are ranks not representative of metric values?

Biased by metric choice?

Biased by site choice?

Haughton et al, J Hydromet, in review




PLUMBER results — why? Not energy conservation.

1lin == 2lin 3km27 wmm model

CABLE 2.0 CABLE 2.0 SLI COLASSIB 2.0 ISBA_SURFEX 3| ISBA_SURFEX JULES 3.1 MOSAIC NOAH 2.7.1 NOAH 3.3 Noah 3.2 ORCHIDEE

1 O G i XX

2_

1 1 1 1 1 1 1 1
Qe Qh Qe Qh Qe Qh Q\e Qh Qle Qh Qle Qh Q\e Qh Q\e Qh

e Constrain each empirical model to have the same sum of (latent +
sensible) heat flux as the LSM at every time step

— Each empirical model then effectively has the same Rnet and ground heat flux as the
LSM it’s being compared to — and conserves energy.

e Results are mixed but the regression against SWdown, Tair and RelHum
still comes out on top, especially for sensible heat flux.

Haughton et al, J Hydromet, in review




Difficult questions for land surface modellers

* Is over-parameterisation is hurting (calibration of unconstrained
parameters inhibits predictive capacity)? Should we have 3-4 parameter
global LSMs (i.e. the dimension of surface data available at that scale)?

Has the drive to add more processes into LSMs (often based on sparse
data sets) led to intractable modelling systems with relatively poor
accuracy?

What does to mean to say we have a “physically based” model of a
natural system if we don’t have enough data to build an empirically based
model?

— Conceptually consistent does not imply physically consistent

— Working well at a few sites does not necessarily imply “physical”, especially if calibrated




Why does this matter?

This shows that the information in meteorology about atmospheric fluxes
is consistent across flux tower sites

— Despite many site Pls, measurement and data processing approaches
Energy conservation at flux tower sites is not insurmountable

Measurements of radiation, meteorology, soil moisture, soil temperature,
radiation, carbon pools, vegetation properties, soil properties,
atmospheric fluxes:

— Flux tower data offers the possibility of avoiding “fuzzy modularity” and confirmation
holism... the only example we have?

The LSM community is extremely lucky to have flux tower data

— We would not be able to know LSMs were performing poorly otherwise
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PLUMBER results — timescale?

1lin == 2lin ~=~ 3km27 == Manabe_Bucket.2 =#= model Penman_Monteith.1

CABLE2.0  CABLE20SLI = CHTESSEL  COLASSiB2.0 ISBA_SURFEX ISBA_SURFEX3l  JULES 3.1 JULES3.1_altP MOSAIC NOAH 2.7.1 Noah 3.2 NOAH 3.3 ORCHIDEE
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Haughton et al, J Hydromet, in review




PLUMBER results — time of day?

1lin =e= 2lin 3km27 == Manabe_Bucket.2 =@= model Penman_Monteith.1
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PLUMBER results — initialisation?

first crossing first cross percent slope difference slope diff significance bias decreasing
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FIG. 7. Model spin-up metrics, based on daily averages, from all LSMs at all sites. From left to right: 1) day
at which the simulated series crosses the observed series; 2) as previous, but as a percentage of the time series; 3)
difference in the slopes of linear regressions of simulated and observed series over time (W/day); 4) significance
of the difference in the previous metric - values left of the red line are significant at the o = 0.05 level ("44%
of all values); and 5) the rate at which the bias is decreasing, measured by mean(error)/slope(error) - negative
values indicate the simulations have a trend toward the observations. Colours indicate the Fluxnet site at which

the simulation is run.

Haughton et al, J Hydromet, in review
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PLUMBER results — ranks vs metric values?

150 Correlation Mean bias error Norm. mean error Std. dev. difference

100 -

uo
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type
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| ]
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Haughton et al, J Hydromet, in review
FIG. 3. Histograms of differences between metric values for benchmarks and models with neighbouring ranks,
for all models at all sites. Values are calculated by taking the difference of the metric value for each model from
the model ranked next-worst in for each LSM, Fluxnet site, metric, and variable. The blue data shows the
benchmark-to-benchmark metric differences. The red data show the differences between the LSM and the next
worst-ranked benchmark (e.g. if the model is ranked 4, the comparison with the 5th-ranked benchmark). The
green data show the difference between the LSM and the next best-ranked benchmark. Because the models are

ordered, all differences are positive (correlation is inverted before differences are calculated).



PLUMBER results — metric?

1lin =#= 2lin -~ 3km27 =e= Manabe_Bucket.2 == model -~ Penman_Monteith.1
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PLUMBER results — sites?

1lin =o= 2lin -~ 3km27 == Manabe_Bucket.2 0= model ~*~ Penman_Monteith.1
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