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Fig. 1: Forest distribution in Australia.
(Australia’s State of the Forest Report, 2008)
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MELBOURNE \ Site characteristics

» Evergreen eucalypt forest

» Mixed species (Eucalyptus rubida, E. obliqua,
E. radiata)

» History of selective harvesting, burns etc.

» Variable tree heights (South: 15 m North: 25 m)
» Patchy understorey, mainly grasses and ferns
» Flux tower instrumentation at 30 m
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MELBOURNE Observation — large variability in NEE

WombatStateForest: 01-01-2010 to 30-12-2014
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Fig. 2. Daily NEE, GPP and Respiration from 2010 to 2014.

Ecosystem dynamics:

» Forest is a carbon sink in all seasons

» Large seasonal variation of NEE

» Important for annual NEE sums, also for respiration and GPP




What can cause such interannual
variations in NEE?

climatic drivers?

Terrain? D T characteristics?
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Fig. 3. Terrain overview around flux tower.

» Ridge oriented N-S
» Descending NW-SE and NE-SW

» Wind channelled along the orientation
of slopes (typically NW/SE)
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Fig. 4. Terrain close-up within core extension
of flux tower footprint.

» Slopes are moderate
» Gullies towards NW, SW and S
» Flat terrain E of tower
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Vegetation and wetness within footprint
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Fig. 5. Topographic wetness index (TWI)
variation within flux tower footprint.

» Topography formed drainage basins

» Large range of wetness within flux
footprint - patchy understory

> Drier towards N and W & wetter
towards E and SW
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Fig. 6. Overstory leaf area index (LAI)
variation within flux tower footprint.

» LAl ranges from 1.5 to 2 m?/m?

» Lower LAI towards NW of tower,
greater LAl towards SE of tower
7
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Fig. 7. Wind rose for 2013.

Fig. 8. Wind rose for 2014.
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Fig. 9. Day-time carbon flux (Fc) for 2013.

Fig. 10. Day-time carbon flux (Fc) for 2014.
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Fig. 11. Carbon flux during summer 2013 under Fig. 12. Carbon flux during summer 2014 under
optimal light conditions (incoming radiation >800 W optimal light conditions (incoming radiation >800 W
m-2) m-2)
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Weighted mean CO, flux (umol m 2 s’1)
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Distinct wind speed and wind direction
combinations result in CO, uptake
hotspots

» location and intensity of hotspots
varies with season

» consistencies per sector:

autumn (MAM)

» NE: very minor contribution

» SE: hotspot noticeable in every
season, strongest in summer

» SW & NW: varying intensity with
season
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Weighted mean CO, flux (umol m 2 s'1)
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Distinct wind speed and
wind direction combinations
result in CO, uptake
hotspots

» location and intensity of hotspots
varies with year

» 2010: hotspot extends further North
» 2011: hotspot split

» 2012 and 2014: hotspot very distinct
» 2013: hotspot intensity is weak
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Cumulative carbon flux (g C m2 yr'1 )

Contribution per wind sector
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Ecosystem dynamics:

-200

» Large seasonal variation
of NEE

» Large range of annual
sums
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Role of footprint:

» Forest is C sink in all wind sectors

» Large range of C uptake between all sectors

» Hotspot location and extent reflected in wind sector contribution:
» 2010 & 2011: northward shift = increased contribution of NE sector
» 2013: weak hotspot = reduced sink
»> 2012 & 2014: strong hotspot = strong sink 13
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Role of footprint:

> % contribution varies with
sector

- SE sector contributes ~35%
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. mesourne | Footprint adjustment procedure

steps:

1)

2)

3)

4)

determine the average wind pattern from all observation years for each
wind sector and sum the occurrences when fluxes originated from each
sector, then divided by the number of observation years

» Standardized frequency contribution for each sector

determine the average carbon flux from each sector during each year

» preserves natural variability within each sector and year

re-calculate the cumulative carbon uptake for each sector and each year
based on the average wind patterns that were standardized over the

study period, i.e. we multiplied the sector-specific results from step 1)
with average fluxes from step 2)

» footprint coverage now equal for each year

iIntegrate across all sectors in each year

» result: remaining annual variability of CO2 fluxes can be linked
more accurately to variations in ecophysiological drivers 1°
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Footprint adjustment

2010 2011 2012 2013 2014

Footprint adjustment (%)

4 wind sectors 39.2 -3.2 -5.2 -53 -2.6
8 wind sectors 23.1 -3.0 -2.9 -7.5 -2.8
1%t Quarter* 17.2 4.7 48  -18.9 -1.4
27 Quarter* 58.6 3.4 9.1  -124 10.7
31 Quarter* 252 -13.1 6.1 11.4 9.4
4™ Quarter* 8.2 -0.6 2.2 -5.2 -6.1
Filtered data* 48.7 39  -106 97  -138

Footprint adjustment (g C m?yr')

8 wind sectors -162.8 32.8 30.9 42.8 29.0
1% Quarter* 430  -14.6 17.5 39.5 5.1
2" Quarter* -48.2 7.1 17.4 143 -139
31 Quarter* 393 285  -11.8 -8.5 17.7
4™ Quarter* -17.8 2.3 6.8 9.2 20.3

Annual budgets (¢ C m?yr)
original (non-adjusted) -705.4 -1108.9 -1068.0 -574.9 -1030.2

adjusted based on annual period*  _g682 -1076.1 -1037.1 -532.1 -1001.2
adjusted based on quarterly period* 8537 _1085.6 -1038.1 -520.5 -1000.9 16




\ Conclusion

What can cause such interannual

variations in NEE?
climatic drivers?
surface

» Hot and dry air from N
» Colder and wetter air from S % characteristics?

» Higher LAl in the SE direction

Terrain?

» Channels northerly winds into ﬁ
NW direction

» Channels southerly winds into
SE direction
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