

# Benedikt Fest b.fest@pgrad.unimelb.edu.au





- 1. Background
- 2. Research rationale/objectives
- 3. Case Studies
- 4. Discussion



# Processes behind non-CO<sub>2</sub> soil GHG-flux





- 1. Background
- 2. Research rationale/objectives
- 3. Case Studies
- 4. Discussion

# Research rationale



#### Research rationale

# **Uniqueness of Australian forest systems**

- Old, weathered soils with a low nutrient status (especially nitrogen and phosphorous)
- Repeated changes to soil properties due to wildfire
  - Direct fire effects:
    - Physical:
      - Increase in Bulk Density after fire
      - Decrease in soil porosity
      - Decrease in soil permeability
      - Change in pH and EC
    - Chemical:
      - Quantity of organic matter decreases, quality changes
      - Nutrient availability increases sometimes remarkably (NH<sub>4</sub>+)
    - Biological:
      - Composition of microbial community changes
      - Microbial biomass decreases

# Research objective

Investigating the influence of the disturbance history (time since last disturbance) on soil CH<sub>4</sub> and N<sub>2</sub>O flux in wet temperate eucalypt forests of SE Australia



- 1. Background
- 2. Research rationale/objectives
- 3. Case Studies
- 4. Discussion

# Case Study A King Lake NP

Wallaby Creek, King Lake NP (ca. 1200 mm precipitation y<sup>-1</sup>)

- 'Chrono-sequence' of 3 *Eucalyptus regnans* dominated forest stands that regenerated after stand replacing wildfires



# Sampling approach

Manual chamber incubations; to investigate **seasonal** variation of soil GHG exchange **within** forest stands and **spatial** variation **between** different aged forest stands

- King Lake NP:
  - 2x10 chambers along two 50 m transects per forest stand (Project started in 2006 and seasonal measurements were taken in 2008 up to the bushfire in February 2009)



### Additional measurements

- Established methods were used to determine:
  - soil bulk density
  - soil gravimetric, volumetric water content
  - soil temperature
  - soil pH and EC
  - particle size analyses
  - soil inorganic N status
  - soil total N, C, litter quantity
  - litter quality (N, C)

# Case Study B Warra LTER

Warra LTER (ca. 1500 mm precipitation y<sup>-1</sup>)

 Chrono/disturbance –sequence' of 6 mixed Eucalyptus obliqua and Eucalyptus regnans forest stands



| ID     | History                       |
|--------|-------------------------------|
| 01CS   | 2001 clear fell slash<br>burn |
| 66 CS  | 1966 clear fell slash<br>burn |
| 66S    | 1966 wildfire                 |
| 34S    | 1934 wildfire                 |
| 34/98S | Mix of 1934 and 1898 wildfire |
| OG     | Over 200 years old            |

# Sampling approach

Manual chamber incubations; to investigate **seasonal** variation of soil GHG exchange **within** forest stands and **spatial** variation **between** different aged forest stands

#### •Warra LTER

3 plots a 5 chambers per forest stand, seasonal
 (Project started in 2009, seasonal measurements were taken until 03.2011)



### Additional measurements

- Established methods were used to determine:
  - soil bulk density
  - soil volumetric water content
  - soil temperature
  - soil pH and EC
  - particle size analyses
  - soil inorganic N status
  - soil total N, C, litter quantity
  - litter quality (N, C)





- A novel approach was used to determine soil diffusivity and methanotrophic activity at the Warra LTER (von Fischer et. al. 2009)
- Soil DNA extraction

# Soil atmosphere non-CO<sub>2</sub> GHG exchange between different age classes

# King Lake NP



# Soil atmosphere non-CO<sub>2</sub> GHG exchange between different age classes

### Warra LTER





- 1. Background
- 2. Research rationale/objectives
- 3. Case Studies
- 4. Discussion

# Difference in soil-atmosphere nitrous oxide exchange between stands of different age/disturbance history



Warra LTER

King Lake NP



# Stand development

#### after Ashton, 2000, Aust. J. Bot.





# C/N ratio can determine nitrification and mineralisation processes

- Soil C/N ratio has been shown to determine the rate of nitrification and mineralization in eucalypt forest soils
- This might indirectly influence soil microbial activity



## Difference in soil-atmosphere nitrous oxide exchange between stands of different age/disturbance history



2001CS

1966CS

## Difference in soil-atmosphere nitrous oxide exchange between stands of different age/disturbance history





1966S

1934S

Tower

OG

Model Adjusted R<sup>2</sup>

 $N_2O$  flux = 8.745 + 18.308\* $NO_3$  0.17

# Differences in soil-atmosphere methane exchange between stands of different age/disturbance history



Warra LTER

King Lake NP



# Impact of fire on CH<sub>4</sub> oxidation

Methanotrophic traits: Soil biophysical factors: • pore volume enzyme kinetics pore distribution NH₄ tolerance pore connectivity nutrient demands (Cu, N, P?) soil compaction CH<sub>4</sub> assimilation pH tolerance soil moisture desiccation tolerance soil temperature **Methanotrophic Biomass/Activiy** temperature **Composition** response metabolism Soil biochemical factors: pH, EC, C/N

nutrient status

### Differences in soil atmosphere methane exchange between stands at Warra LTER



| Model   | Adjusted R |
|---------|------------|
| Ivioaei | Aajustea i |

CH<sub>4</sub> flux = -23.169 - 853.3\*
$$\mu$$
 0.554  
CH<sub>4</sub> flux = -12.069 - 816.8\* $\mu$  - 3.76\*D<sub>CH4</sub> 0.636





#### Adjusted R<sup>2</sup> Model



$$\mu$$
 = 0.001 + 0.06\*Air filled porosity 0.132  
 $\mu$  = -0.151 +0.24\*Air filled porosity + 0.22\*VWC 0.233

### Summary

- Non-CO<sub>2</sub> soil atmosphere GHG fluxes are different in stands of different disturbance history for the same forest community in the same geographic area
- The differences can partly be attributed to stand development related changes in the soil structure and soil nutrient status
- For CH<sub>4</sub> differences in microbial activity between stands explains most of the observed differences in flux magnitude
- Differences in N<sub>2</sub>O flux magnitude between stands can be attributed to with stand development increasing soil NH<sub>4</sub> and NO<sub>3</sub> status probably due to lower soil C/N ratios. This with increased soil moisture probably leads to higher levels of denitrification

### **Concluding Comments**

- Þ Non-CO₂ soil atmosphere GHG fluxes are difficult to upscale due to their spatial variability
- Þ Better mechanistic understanding is needed to model these fluxes
- Þ approaches needed to characterize the soil status/and type for a given stand at one point in time that allows up scaling and modeling of Non-CO<sub>2</sub> GHG (this might be possible for CH<sub>4</sub>)

## Soil GHG exchange in CO<sub>2</sub> equivalents



### Comparison with other forest systems



# Thank you!













© Copyright The University of Melbourne 2008