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complex structure in forests —
who is interested in what information?
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complex structure in forests —
who is interested in what information?

»Environmental, Habitat and Conservation Focus
"Forestry (native Forests and Plantations)

=Carbon accounting

— different focus may lead to different assessment method
and sampling strategies

within canopy remote sensing



complex structure in forests —
what’s the relevance?

BOOSTED CARBON EMISSIONS FROM AMAZON DEFORESTATION

e Standing biomass is a major, often poorly quantified determinate of
carbon losses from land clearing.

« Annual rate of deforestation has not changed significantly BUT biomass
lost per unit of forest cleared increased .

 if the annual area deforested remains unchanged, future clearing will
increase regional emissions by 0.04 Pg C yrl — a 25% increase over

2001-2007 annual carbon emissions.

Loarie et al. 2009
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complex structure in forests —
what’s the relevance?

When you measure what you are speaking
about and express it in numbers, you know
something about it, but when you cannot (or do
not) measure it, when you cannot (or do not)
express it in numbers, your knowledge is of a

When I use a word, it means
exactly what I want it to mean,
neither more or less (Humpty
Dumpty).
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complex structure in forests —
it must be measured, but how?
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oround based Lidar
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oround based Lidar

WHAT INFORMATION CAN WE GET FROM CANOPY LIDAR?

» Info on crown diameter, leaf area, ..., vertical profile of leaf area!
» Info on dbh, basal area, tree density ...

= Carbon stocks

» Environmental, Habitat and Conservation Focus
» Forestry (native Forests and Plantations)

» Carbon accounting

within canopy remote sensing



oround based Lidar

Sumida et al. 2002

time of flight principle
laser emits pulse; measured is the time taken by the pulse to be reflected off
the target and returned to the sender: D = ct/2

within canopy remote sensing



oround based Lidar
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http://upload.wikimedia.org/wikipedia/commons/c/c0/LIDAR-scanned-SICK-LMS-animation.gif

USDA Forest Service -- Pacific Northwest Research Station
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oround based Lidar

Waveforms
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oround based Lidar

Tian YAO, Boston University
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oround based Lidar

Intensity & range
based classification

Foliage
Trunk
Ground

Xiaoyuan Yang, Boston University
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Xiaoyuan Yang, Boston University

oround based Lidar
Original classification

“Cone” model simplified

Tree Height

Fitwith | | Fitwith |, | Fndone
< ircle | clear : '
cire height Trunk Foliage Single Tree

Improved classification
O

Assumptions:
1.“Cone” shaped trunk

2.Straightly growing trunk
3.“Clear height” can be easily defined

Foliage Single Tree

Trunk
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Xiaoyuan Yang, Boston University

oround based Lidar

“Cone” model simplified

before after
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Courtesy D.Jupp, CSIRO

oround based Lidar
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Tian YAO, Boston University

cground based Lidar

Waveform using
Andrieu projection

Three planar slices as color
composite using cylindrical
projection of the data cube.
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oround based Lidar
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Xiaoyuan Yang, Boston University

oround based Lidar
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Xiaoyuan Yang, Boston University

oround based Lidar

Crown size Height to Crown
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oround based Lidar
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Eva van Gorsel
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Phone: +61 2 6246 5611
Email: eva.vangorsel@csiro.au
Web: www.cmar.csiro.au

THANK YOU
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