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A model is not reality

It is a scientist’s job to understand how they differ.
Models are never 100% correct.

They can be very useful — how do we know when they’re
useful?

Why are they not correct?

1. A modelis a closed system but simulates an open system (see
Oreskes et al, Science 1994)

Many relationships are based on empirical approximations rather
than physical laws
These relationships are approximations based on a certain period in
time, spatial scale, set of circumstances
Their spatial and temporal aggregations mean that even physical
laws need to be parametrised as ‘net effects’.




What is a model?

* A modelis a simplified representation of a natural system.




What is a model?




What is a model?




Differences between models — steps in model development

PERCEPTUAL MODEL - identify features of the system

CONCEPTUAL MODEL - identify relationships between
features/processes in the perceptual model

MATHEMATICAL/SYMBOLIC MODEL — identify equations that
describe the conceptual model
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NUMERICAL MODEL - codification of equation solutions,
spatial and temporal aggregation choices; implementation on
a computer system.




Coupled models and component (uncoupled) models

1. Uncoupled / offline / component models
e.g. land surface model

Time-independent inputs

(‘parameters’):
* VVegetation characteristics

* Soil Characteristics

Time varying inputs:
» downward radiation l Output /

* air temperature Prediction:

} * Moisture and heat fluxes

* precipitation

. hl‘Jmldlty e carbon fluxes
* windspeed e runoff
* CO2 concentration

Initial states:

* Initial soil temperature

: : * initial soil moisture . .
These data are provided in Output is purely for analysis

a “forcing’ or ‘driving’ file, initial carbon pool sizes
usually from observations * initial canopy water storage




Coupled models and component (uncoupled) models

2. Coupled model system including a land surface model

These data are provided by
an atmospheric model

v

Time varying inputs:

» downward radiation
¢ air temperature

* precipitation

* humidity

* windspeed

* CO2 concentration

Atmospheric model

Time-independent inputs

(‘parameters’):
* Vegetation characteristics

* Soil Characteristics

|

Initial states:

* Initial soil temperature
* initial soil moisture

* initial carbon pool sizes

* initial canopy water storage

Output /
Prediction:

* carbon fluxes

* runoff

LSM outputs provide inputs
to the atmospheric model

* Moisture and heat fluxes




Coupled models and component (uncoupled) models

The Development of Climate models, Past, Present and Future

Mid-1970s Mid-1980s Early 1990s Late 1990s Present day Early 2000s?
Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

z/ N ~
Land surface Land surface Land surface ~ ( Land surface

Ocean & sea-ice  (Ocean & sea-ice

Sulphate Sulphate Sulphate
aerosol aerosol aerosol

Non-sulphate Non-sulphate
aerosol aerosol
/ Carbon cycle Carbon cycle

Sulphur Non-sulphate

Ocean & sea-ice
cycle model aerosols

model

Land carbon
cycle model . Carbon

Ocean carbon cycle model

cycle model

Dynamic Dynamic
vegetation vegetation

Atmospheric Atmospheric
chemistry chemistry

The development of climate models over the last 25 years showing how the different components
are first deveolped seperately and later coupled into comprehensive climate models (IPCC WG1,2001)

Coupled models, e.g.
Global Climate Model (GCM)
Earth System Model (ESM)

Earth system Model of
Intermediate Complexity
(EMIC)

* Single column model

Examples: ACCESS model, Mk3L,
CSIRO Mk3.6, CCAM, WRF

Behave very differently to
component models

- May have chaotic response to
smooth variations in initial
conditions or parameter values




Empirical vs physically based models

The basic idea: processes that are well understood are modelled using
“physical laws”. Those not so well understood are modelled using
empirical approximations. Most models have a combination of both.

All treatments — including “physical laws”, are in some sense empirical
“First principles” to “heavily parameterised” to “fixed” to “ignored”

Known physical mechanisms (e.g. gas law) are relatively scale-independent
— model will usually improve with increasing resolution.

An empirical parametrisation must often make assumptions about
functional dependence, spatial scale of importance, time scale of
importance

— This is one reason why changing coupled model resolution is so difficult — “tuning”.

Distinction between physical and empirical is based on ‘free’
unmeasurable parameters e.g. Ginzburg and Jensen — will talk about this
towards the end.




What is a model?

Why are models so hard to use?

Understanding modelling uncertainty

Measuring model performance

What makes a good model?

Using models to investigate scientific questions




Why are models so hard to use and understand?

Most models are written for their creator(s) and not anyone else.

In coupled models, each component is usually written by a different
person/group

Most funding agencies do not view model development or model
refinement as core science — they are just tools

Most research organisations do not view model documentation / model
support as core science

Unfortunately, this community loves Annoyingly Cryptic References Or
Names that Yield Meaninglessness, and use them whenever they can

The blue-red model spectrum:




Why are model so hard to use and understand?

Model has technical documentation

Model has no technical documentation

Technical documentation matches what is
in the model code

Technical documentation related to what
was in the code 5 years ago

Model is open source, community
oriented and has hundreds of users

Model is only used by a few people in one
organisation

All development of the model is contained
in a version control system

Individuals maintain and manage multiple
versions in home directories/desktop

Model has a clear user interface and user
guide

Model has no user guide and no specific
interface

Code is clearly commented, and logically
structured

Code is not commented at all and
structure is ad hoc

Variable names are consistent throughout
the code and relate to their function

Variable names change in each subroutine
call and are meaningless

Model changes meet prescribed
performance/realism/functionality checks

Changes are accepted purely on the basis
of personal preference.
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Uncertainty

 Sources of uncertainty
— Input uncertainty
— Initial state uncertainty
— Parameter uncertainty

* Dealing with uncertainty: ensemble simulation and stochastic variables

* Model space uncertainty

— Model independence




The numbers a model needs (e.g. land surface model)

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

. * parameters for empirically
Model mpUtS approximated processes

(time-varying) l

* radiation down
* air temperature
* humidity }
* windspeed

Output /
prediction

* CO2 concentration

State of system in the past

* soil temperature and moisture
* carbon vegetation, soil pools
* vegetation distribution in a DGVM




The numbers a model needs (e.g. coupled climate model)

Model inputs
(time-varying)

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

* parameters for empirically
approximated processes

* carbon emission
scenarios

* solar radiation
changes

* human land use
changes

!

State of system in the past

* Atmosphere, ocean, soil temperature
* concentrations, stores e.g. CO, in air

* velocities, vegetation distribution

*

Output /
prediction




Why distinguish between parameters and inputs?

| assert that some real world relationship is well approximated by a linear
model: y=mx (m: parameter, x: input)

After comparing with observed data | then suggest that m needs to vary
with time (i.e. that m is an input, rather than a parameter)

My suggestion that | now need another model to model m in time is an
implicit admission that my linear model has failed to give adequate insight
into the relationship between y and x.

By holding on to my original model | am just re-defining a non-linear
problem.

The distinction between inputs and parameters is a fundamental part of a
model’s defintion - a “good” model separates parameters and inputs

appropriately




Sources of uncertainty

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

. * parameters for empirically
Model mpUtS approximated processes

(time-varying)

* radiation down l
* air temperature Output /
* humidity ) e

* windspeed predlctlon

* CO2 concentration

State of system in the past

* soil temperature and moisture
* carbon vegetation, soil pools
* vegetation distribution in a DGVM




Uncertainty in inputs

Model inputs

: : * Measurement uncertainty of inputs (offline):
(time-varying)

— Precision & accuracy

* radiation down

S —— — Instrument failure and gap-filling

* humidity — Time aggregation
* windspeed

* CO2 concentration

e If coupled to a climate model:
— Errors/uncertainty from other model components
— Cumulative effect of errors with coupled feedbacks

 How would you quantify this uncertainty in your final
prediction variables?




Uncertainty in initial conditions

Soil moisture and soil temperature
Carbon pools in soil, vegetation State of system in the past

Canopy water storage * soil temperature and moisture
* carbon vegetation, soil pools
* vegetation distribution in a DGVM

Most commonly dealt with by ‘spin-up’ of models.

Component models commonly have separate spin up first.
— Convergence to reality?
— Reflect model biases? State values become model-specific
— What if we used “true” values? Would the model be stable?

NWP use of soil moisture nudging in data assimilation

How would you guantify this uncertainty in your final prediction variables?




Uncertainty in parameter values

Spatially explicit vegetation and soil
characteristics that are time-invariant for the
simulation

Physical constants

Parameters for empirically approximated
processes

Most commonly dealt with by
‘calibrating’ (parameter estimation; ‘tuning’
etc):

— Can be automated parameter estimation (usually with
a component model, e.g. land surface model)

— Or manual “expert guess” calibration

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

* parameters for empirically
approximated processes

“optimal” values

e

Model performance

Model parameter values




Automated calibration — more detail

Find an observed data set of a model
output that is likely to give information
about parameter values

Parameter b

Select realistic ranges for parameter
values

Decide on a cost / error function

Find the parameter values that minimise
the cost function in this acceptable range

Parameter a




Automated calibration — potential problems

Is there any guarantee that parameter values obtained in this way are

meaningful?
— Assumes the model is perfect
— Values may be those that best compensate for model biases/errors

—— observed
— cbm
—— solo

NEE pmol m~ 3




Automated calibration — potential problems

Is there any guarantee that parameter values obtained in this way are
meaningful?

— Assumes the model is perfect

— Values may be those that best compensate for model biases/errors

Calibration often ‘tunes’ a model to particular data set, time period or cost
function:

— There is a danger of moving more toward an empirical model

Is there any better way of selecting parameters? Probably not.

Can give us insight into model deficiencies though...




Multiple criteria calibration

Parameter Space Criterion Space
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Parameter 91

Illustrates a common principle in modelling a complex system with a
simple model

— “conservation of crap”

The amount of separation of the two minima is an indication of the
parameter-independent error in the model.

How can we account for parameter uncertainty?




Deterministic, ensemble, and stochastic simulation

Model
(ﬁme_inde'::de::es param eters 1

Model inputs

('tirrlevafvf:‘g) : / TT‘% ‘ PrEdiCﬁon 1
Sl Model inputs 1 |

predic, on

State of system in the past

Initial states 1 /

Histogram of epilmp

e Estimate different but equally plausible
parameter values, input values and initial
states

Run model for possible combinations to get a
statistical characterisation of the prediction:
ensemble simulation Prediction value




What is a probability density function?

Re | ative freq uency Kernal Density of Miles Per Gallon
of certain
values of x

Histogram of epilmp

probability of
certain values of x 10 2 3

X =32 Bandwidth=2477

 With many estimates of x we can estimate the probability density function
(PDF) of x




Deterministic vs. stochastic simulation

A variable described by a PDF (rather than a single value) is called a
‘stochastic variable’ or ‘random variable’

Particularly important for describing the probability of extreme events

By better sampling uncertainties in a stochastic simulation we can be more
confident about the predictions.

Running a land surface model 10,000 times to generate a pdf is possible
- e.g. | have a parameter perturbation driver for CABLE (just ask).




Model inputs
(time-varying)

* radiation down

* air temperature

* humidity

* windspeed

* CO2 concentration

Propagating uncertainty

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

* parameters for empirically
approximated processes

!

State of system in the past

* soil temperature and moisture
* carbon vegetation, soil pools
* vegetation distribution in a DGVM

*

Output /
prediction




Quantifying uncertainty — ensemble simulations

climateprediction.net i The probability of a

' particular temperature
HadCM3, perturb e
parameter values,

initial conditions
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Cascading uncertainty in prediction problems

Aggregation/simplifying
assumptions

Ballooning Ballooning Ballooning

v v =

n
» >

g

How do we

< quantify
uncertainty in this

environment?

f f 1

IPCC Spread of ES Regional
emissions model simulations downscaling
scenarios of 2100 results

Impacts model
results




Cascading uncertainty in prediction problems

* Dealing with uncertainty comprehensively is very difficult
* Potentially very computationally expensive

 We're not very good at it yet

How do we

< quantify
uncertainty in this

environment?

1 1 f
IPCC Spread of ES Regional

emissions model simulations downscaling
scenarios of 2100 results

Impacts model
results




Model space uncertainty
How can we

consider uncertainty

associated with the

space of all possible
models?

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

. * parameters for empirically
Model mpUtS approximated processes

(time-varying)

e radiation down *

* air temperature

Output /
+ humidity =» MODEL — > .
* windspeed predlctlon

* CO2 concentration

‘Model structure’
‘Model physics’
State of system in the past ‘Model equations’

* s0il temperature and moisture ‘Model conception’
* carbon vegetation, soil pools
* vegetation distribution in a DGVM are used

interchangeably




Model inputs
(time-varying)

* radigtiormeowWn

* air temperature

* humidity

* windspeed

* CO2 concentration

Model space uncertainty

Model parameters
(time-independent)

* spatiaiiy=avnlicit surfacenrgperties
* physical constants

* parameters for empirically
approximated processes

|
v

Real number spaces

Output /

=» MODEL ==

State of system in the past

* soli"tamperature and moisture
* carbon vegetation, soil pools
* vegetation distribution in a DGVM

prediction

NOT a real
number space




What'’s in the model space?

PERCEPTUAL MODEL - identify features of the system

— Defines the variables in the input, parameter and state
spaces

CONCEPTUAL MODEL - identify relationships between
features/processes in the perceptual model

MATHEMATICAL/SYMBOLIC MODEL - identify equations that
describe the conceptual model

NUMERICAL MODEL — codification of equation solutions,
spatial and temporal aggregation choices; implementation on
a computer system.
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Quantifying uncertainty — ensemble simulations

climateprediction.net i The probability of a
particular temperature

HadCM3, perturb rise?

parameter values,
initial conditions

NO.
The probability that
HadCM3 will simulate a
particular temperature
rise
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 To get an unbiased estimate, we need multi-model ensembles with:
— many independent estimates of parameter values
— many independent estimates of initial conditions
— many independent estimates of the MODEL itself




Model independence

Modelling groups share literature, data sets, parametrisations, even model code:
— How independent are models built by different research groups (think IPCC - impacts)?

— How should we define independence?

At least two different ways to think about model independence:

1. Classify models based on their simulation values — analogy with Linnaean

taxonomy

— the amount by which models differ in some output/s in the same conditions reflect the level of
their independence

2. Classify models based on the independence of their structure — analogy with
evolutionary taxonomy

— what proportion of the treatment of particular processes do models share?




Model independence — an example

 Abramowitz & Gupta (2008) tried to develop a measure of distance

between models as a proxy for independence:
— Based on differences in models’ output in similar circumstances
Distance measure (metric) could allow statistical characterisation of model space

Model parameters
(time-independent)

* spatially explicit surface properties
* physical constants

. * parameters for empirically
Model mPUts approximated processes
(time-varying) l

* carbon emission
scenarios
Output /

* solar radiation
changes prediction

* human land use
changes

State of system in the past

* Atmosphere, ocean, soil temperature
* concentrations, stores e.g. CO, in air
« velocities, vegetation distribution




Model independence — an example

Abramowitz & Gupta (2008) tried to develop a measure of distance
between models as a proxy for independence:
— Based on differences in models’ output in similar circumstances

— Distance measure (metric) could allow statistical characterisation of model space

Even if we do have a distance metric for the model space as a proxy for
independence, using this information is not easy:
— How do we weight model independence vs. weighting model performance?

— [Background: impacts applications usually use multi-model ensemble average]




How to weight independence vs. performance in ensembles?

Assume we have a metricon a
projection of the model space:
— d(model, obs) = performance
— d(modell,model2) = dependence

Assume we want to simply
include/exclude models from
an ensemble based on
dependence

Observed Data
set 2

- Observed Data
Use a “dependence radius” to

decide

Model 1 and 4 appear quite
dependent

Only if they perform poorly... Projected model space




How do we weight independence vs. performance?

Model 1 and 4 appear quite
independent, but are the
same distance apart!

Similar predictions might just mean
that both models are correct —
especially difficult if observations
are of uncertain quality

@ Model 2

Observed Data

set 2
@ Model4

. Observed Data

Model 1 S€tl @ WVodel 3

Projected model space




“Do we want independence? Surely we want models to converge
to the truth.”

Assume we have a metricon a
projection of the model space:
— d(model, obs) = performance

— d(modell,model2) = dependence

Assume we want to simply
include/exclude models from an
ensemble @ Model 2

All ensemble average Obszerved Data
set

Observed Data
setl

Remove worst performing . Model 4
. Model 1

@ Model3
Remove the most dependent

Analogy with hilltop estimation
by walkers Projected model space
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Measuring performance

Spatial representation choices
Temporal representation choices
Cost function choices

Multiple variables

“Verification”, “validation” and “evaluation”

How good should a model be? How can we decide on model benchmarks?




Measuring performance — spatial representation:

Departures in temperature in °C (from the 1990 valuo)
Jobal g models
Obsecvations, Noithem Henisphere, proxy dita o o | Proectins|  Sovorsimodels
il I SRES enveiope

>

Variations of the Earth’s surface temperature:
year 1000 to year 2100

Bars showthe
rangein year 2100
produced by
several models

Scenarios
— 8
— AT
L]
2
—u
r . + - : , —
1000 1100 4 2000 2100 — ISz
©|amys

45E
Longitude

NEE flux umol/m2/s

"Tumbarumba" DJF NEE

Hour of day

Relationship
between
these?

Depth (m)

Mean Meridional Current from ADCPs

Zonal and time average. Johnson ADCP data. (em s71)

Different spatial spatial representations will give very different results

— Good performance in one does not guarantee good performance in another

— May mask issues




Measuring performance — temporal representation:

Hourly, daily, monthly, annual averages — increasing loss of information

Frequency domain measures, e.g. wavelet transforms

Frequency(octave)

SPRING

MAY 16MAY
993

-100 -80

1JUN

-60

16JUN

1JuL
Time

-40

-20

20

16JUL

40

MOISTURE FLUX AT
SAN ANTONIO, TX
(wavelet analysis)

units=g/kg*mis

DIURNAL
TIME
SCALES

BAROCLINIC
TIME SCALES

1AUG 16AUG

60




Measuring performance — temporal representation:

* Hourly, daily, monthly, annual averages — increasing loss of information

* Frequency domain measures, e.g. wavelet transforms

e Statistical characterisation (e.g. using pdfs)




Measuring performance — cost functions

Cost functions — RMSE; mean; maximum; minimum; variance/std;
correlation; model-observation regression gradient, intercept, r?;
categorical histograms; PDF overlap; likelihood

All give different information about performance

Good performance in one doesn’t guarantee good performance in another

Gradient

+ == CABLE
== Benchmark

1.0

NEE RMSE
CABLE vs. obs reg. grad.
04 06 08
02 04 06 08




Measuring performance — multiple outputs

For example, a land surface model might predict:
Latent heat flux
Sensible heat flux
Runoff
Drainage to water table

Net Ecosystem Exchange of CO,:
Is uptake / GPP right?

Is respiration term right? Parameter Space Criterion Space

How can / should they
be treated
simultaneously?

Parameter 92

Parameter 6 :




Measuring performance — evaluation pedantry

“Verification” — literally means testing for truth

“Validation” — valid for a particular purpose
— Specific spatial representation
— Specific temporal representation
— Specific cost function

“Evaluation” — a general term for looking at performance




Measuring performance — benchmarks

How good should a model be?

"Tumbarumba" DJF NEE "Tumbarumba" JJA NEE

0

NEE flux umol/m2/s
NEE flux umol/m2/s

8 -6 -4 -2

Hour of day Hour of day

"Tumbarumba" MAM NEE "Tumbarumba" SON NEE

NEE flux umol/m2/s
NEE flux umol/m2/s

T T

Hour of day Hour of day




Measuring performance — benchmarks

How good should a model be?
— What level of performance should we expect in a given performance measure?

Hierarchy of benchmarks:
— Physical consistency within closed system — energy and mass conservation [weak]

— Within observational uncertainty [strong]

One example: the level of performance you should expect depends on the
amount of information provided to the model
— Expect a simple model with few inputs/parameters to be outperformed by a complex model
— This information content of inputs can be quantified using an empirical model




Empirical benchmarking

Normal model: Empirical model:

* Multiple linear regression
* Neural Network
*SOLO

* other machine learning...

Spatially
explicit
parameters

Requires observed data
to train and test
empirical model (flux
tower data here)

m By manipulating the

relationship between
training and testing data

sets we can test how
Physically based Statistically well a LSM utilises the

\ COMPARE jed information available to
e.g. NEE CO,, latent IL...

heat, sensible heat

Empirical
model




=
3
+
©
()]
£
+
c
(]
-
©
-

Empirical benchmarking

Harvard Forest

—_—
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o

observed
ANN
CBM
CBMcal
model 2

m

(&3]
o
. NEE [umol m2s™]

Sensible heat [W

To make this a fair comparison, we can manipulate:

— The quality/ ability of the empirical model (linear regression, ANNs, others)

— The relationship between the training and testing sets for the empirical model

Which inputs the empirical model can use (i.e. more or less information about outputs)
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What makes a good model?

 The best performing model?

* No —one that encompasses understanding of the primary mechanisms
and causal relationships affecting the variability of the system.
— A good fit to observations does not guarantee this
— Favour a simple explanation/mechanism over a complicated one [Occam’s razor]

e Example of motion of planets (Ginzburg and Jensen, TREE, 2004):

1. Ptolemy’s epicycles:

2. Newton-Copernicus

Total number of Number of Number of ‘Degree of
parameters® unsupported parameters describing overfitting™
parameters® the theory goal
Theories explaining the motions of other planets in our solar system
Newton (1687) 0
Ptolemy (ca. 150) ~10




Using models to investigate scientific questions

We often assume that the scale of the phenomena is the scale of its
causes

To what extent is the natural system modellable? Which processes are
functionally predictable and which are chaotic (“butterfly effect”)? How do
they interact?

What are the major sources of uncertainty in the experiment?

How does the uncertainty in the simulation affect the conclusions?

Is the measure of performance appropriate?




Conclusions

Complex systems modelling is a relatively new and complicated scientific
tool

Clear criteria for establishing whether simulations are meaningful or not
are not firmly established yet — it’s your job to be convincing

Estimating and interpreting uncertainty is very difficult

Evaluating performance involves interpretation of appropriate spatial and
temporal representation, cost functions and variable combinations.

You are not going to be able to deal with all of these issues, but being
aware of them is important.




Protocol for the Analysis of Land Surface models (PALS)

Screenshots below...
For use by data collectors and land surface modellers

Contact me if you're interested — alpha version to be released in April
2010 (gabsun@gmail.com)

(NS N&) P A LS : Protocol for the Analysis of Land Surface models

AN - r e
1\1 | :," (c'\ ( X N (ﬁ> (E] http://tempest.ccrc.unsw.edu.au:8080/PALS/User/ListModelOutputs.action

E] P A LS : Protocol for the Analysis ...

PA LS : Protocol for the Analysis of Land Surface models Logged in as stefan. [Log out] [PALS Home] [CCRC]

| Model Outputs | Plots ‘Data Setsl Models ‘

| Upload ” Delete ” Edit ” Public |I Private |

Model Output Data Set Status Access
] | bondy bondy View Plots CABLE Bondville.éb
] | cab sav2 View Plots CABLE Tumbarumba.lxyz
] | cab sav View Plots CABLE Tumbarumba.lxyz
] | Cab Bond View ts | CABLE Bondville.éb
Cab Tummp View Plots CABLE Tumbarumba.lxy
] Cable Tumm22 View Plots | CABLE Tumbarumba.lxy

m

] Cable Tum View Plots | CABLE Tumbarumba.lxy




Protocol for the Analysis of Land Surface models (PALS)

P A LS : Protocol for the Analysis of Land Surface models

Mve 7 o o
(«)r)=(c ) % ) A ) ([E hup://tempest.ccrc.unsw.edu.au:8080/PALS/User/ListPlots.action

El P A LS : Protocol for the Analysis ...

PALS : Protocol for the Analysis of Land Surface models

Logged in as stefan. [Log out]

[PALS Home] [CCRC]

| Model Outputs | Plots lData Sets | Models

| Display || Clear Filters |

Model Data Model Output Var

(Filter... 49 | (Filter... 14) | (Filter... %) | [Filer... ) | [Filter... i+

Bondv

Bondv

Bondville. 6k

Bondv

Bondv

Bondv

Status

Access

ublic

ublic

ublic




Protocol for the Analysis of Land Surface models (PALS)

eno PALS : Protocol for the Analysis of Land Surface models

I oy - San
1\4 - @D &9 €D | El http://tempest.ccrc.unsw.edu.au:8080/PALS/User/ViewPlots.action?analysisRunld=60&analysisRunld=57&analysisRunl 1.7 v ). ( -“' )

2 Model: CABLE, Model Output: bondy bondy, Analysis: Diurnal

Model: CABLE, Model Output: bondy bondy, Analysis: Taylor Gl

“Bondville.6b" DJF Qh "Bondville.6b" JJA Qh
"Bondville.6b™ Qh Taylor diagram

Sensible heat fux W/ m*

Sensible heat Max W/ m*

12
Hour of day Hour of day

“Bondville.6b" MAM Qh “Bondville.6b™ SON Qh

Standard deviation

Sensble heat flux W/ m*

40
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3 Model: CABLE, Model Output: bondy bondy, Analysis: Average 4 Model: CABLE, Model Output: cab sav2Z, Analysis: Smoothed
Window Evaporative Fraction

“Bondville.6b" - RMSE for av. Qh “Bondville.6b™ - cor. coeff. for av. Qh

2
e o
2
2 o
0 7 15 22 30 0 7 15 2 0

Averaging window size (days) Averaging window size (days)

"Tumbarumba.1xyz" smoothed evaporative fraction

Mod & obs corralation

y average evap frac

“Bondville.6b" - gradient for av. Gh “Bondville 6b" - std dev for av. Qh
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