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‘Ilml' Motivation

CSIRO

e At flux towers, we use measurements of
the turbulent wind and concentration
fields to infer surface exchange.

¢ A basic understanding of boundary layer
structure is essential to understand and

Ecophysiolo :
physiology interpret the measurements.

¢ In this lecture we cover:

o Basic states of the atmospheric
boundary layer

o Basis of eddy-covariance method for
flux measurements

o Atmospheric stability in the surface
layer

Modelling o Some essential turbulence statistics




Sublayers in the Atmospheric
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Daytime Convective Boundary Layer (CBL)
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Courtesy Prof HP Schmid
Indiana University

« Looping plume, in the presence of large convective thermal eddies
 Lifting limited by capping inversion; free troposphere above

* Well mixed conditions downwind, in mixed layer of ~1400 m depth

Tarong, Queensland (AUS), stack height: 210 m, z; = 1400 m, w* = 2.5 ms't. Photo: Geoff Lane, CSIRO (AUS)



‘llml' Nocturnal Boundary Layer (NBL)
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Courtesy Prof HP Schmid

Nighttime Stable Boundary Layer Indiana University

Early morning, steam fog indicates surface inversion
“fanning” plume from 75 m stack indicates strong stability, flow from right
“coning” plume from 150 m stack indicates neutral stability, flow from left
In between, strong wind direction shear, h = 150 - 200 m

gt

Salem (Mass.) on a very cold February morning. Photo: Ralph Turcotte, Beverly Times
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‘“ml' Atmospheric turbulence has structure at
multiple scales
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Mechanisms of turbulence generation
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*Mechanical mixing
nas the air flows over a rough surface due to dynamic instability of
the large wind shear that develops in the lowest layer

*Buoyant or convective mixing
oAir flow over a warmer underlying surface - unstable
oAir flow over colder surface - stable

*\Water vapour is lighter than dry air
asurface evaporation also contributes to buoyancy of the air.



Mechanisms of turbulence generation
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Logarithmic layer
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I Logarithmic layer
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Flux towers

Lowest ~ 10% of ABL
Constant fluxes
Strong gradients in:

= wind speed, temperature, other scalars
Controlling length scale

= distance to the surface, z (or z - d)
Controlling velocity scale

= Friction velocity, u*

Surface or
‘constant flux’ layer




Gradient Friction velocity (constant)
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Tall roughness: displacement height d
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Modifications to the neutral log law (2)

Buoyancy Controlling scales are now: U, Z, 8 , L

Generalized gradients
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M-O similarity — 8 & u profiles
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Surface or
z~2-3h. o & 0y ‘constant flux’ layer

inner region

Flux towers

RSL influenced by the underlying surface through:
» windspeed inflection instability
e source/sink distribution

RSL extends from the canopy top to 2—3 X h,



Coupled log, roughness & canopy layers
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Eddy fluxes
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Eddy covariance is about analysing signals
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generated by atmospheric turbulence
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‘mm' Some notation

el Reynolds decomposition & time averages
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Covariance — a measure of how the product of two signals
vary about their respective means

_ t+AL, B B
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var(T) =T72 :Tnsr (n)dinf)

(Co)variance is area under
the (co)spectral density

covwT)=wT = [nC,; (n)dinpr) ~ curve
0

S, = contribution of total variance per unit dn
C,.o = contribution of total covariance per unit dn

nS(n)

In(n)



‘lmu! Computing covariance — amplitude attenuation

Covariance = 1.00
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y i ~ Covariance = 0.00

Covariance = -1.00

Larry Jacobsen, CSI



Spectral decomposition
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*\We can decompose any signal into a sum of cosines
with varying amplitude, frequency and phase

Sa(t):Ah0+phlcos@alt+%l)+ph2Cosé)a;-l-qoaz)FAEB Cog()a£+%3-)' .
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Square wave - time domain =




Square wave - frequency domain

Larry Jacobsen, CSI
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‘mm' Frequency scaling

Spectral peak moves to lower frequencies as
measurement height increases
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‘mm' Frequency scaling
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nC,.(n)/wT

Spectral peak moves to higher frequencies as

windspeed increases
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Spectra & cospectra depend on stability z/L

Normalize frequencyn = fz u
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Summary
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*Atmospheric surface layer = log + roughness sublayers

= Occupies lowest 10% of the ABL

= Fluxes ~ constant

= Strong gradients wind speed, temperature & other scalars
= Controlling scales U., Z, 8, L

*Turbulence has structure, generated by mechanical and
buoyancy forces

*Need to understand statistics of variances and
covariances in both time and frequency domains

= Important for EC system design and good measurements
«Atmospheric (co)spectra scale with n= fz/u

*(Co)spectra are stability dependent



